
A PRIMER ON
MACRO PROGRAMMING WITH
Visual BASIC for Applications/Excel

by

Steven C. Chapra
Room 223 (Telephone: 617 727 3654)
e-mail: schapr01@tufts.edu
Civil and Environmental Engineering Department
Tufts University
Medford, MA

October 14, 1999

BIBLIOGRAPHY

 Walkenbach, John, Microsoft Excel 2000 Power Programming With Vba, IDG Books, Foster
City, CA, 1999, ISBN: 0-7645-3263-4, $39.99 + shipping (www.amazon.com).

 Walkenbach, John, Excel 2000 for Windows for Dummies : Quick Reference (--For Dummies),
IDG Books, Foster City, CA, 1999, ISBN: 0-7645-0447-9, $10.39 + shipping
(www.amazon.com).

Tufts 1 VBA Primer

http://www.amazon.com/
http://www.amazon.com/

The Basics of Programming in Visual BASIC

Computer programming is not difficult. It really amounts to

 Learning several general concepts
 Being careful, organised and logical
 Practice

In this primer, we will outline the general concepts using the Visual BASIC computer
language.

There are only 8 fundamental concepts underlying computer programming to
solve numerical problems confronted by engineers. These are

1. The “idea” of a program
2. Constants, variables, assignment and types
3. Mathematics
4. Decisions
5. Loops
6. Arrays
7. Macros, functions and subroutines
8. Input/output

The following sections provide some detail on each of these concepts.

1. THE “IDEA” OF A PROGRAM

A program is a set of instructions to tell a computer to do something. The simplest
type is a sequence of instructions that the computer implements one after another in a
mindless fashion. These instructions are sometimes called statements. For example,
in Visual BASIC

Sub Adder()
a = 10
b = 33
c = a + b
Msgbox c
End Sub

Although some of the words might seems alien, it’s not too difficult to see that the
computer will add two numbers together and then display the answer. In this case,
because we’re using Excel, we employ a “message box” to display the answer on the
spreadsheet.

The implication of a program as a series of instructions is that they must be
unambiguous and totally logical. If not, the program won’t work the way you want it
to. For example, suppose you redid the program and switched two of the statements

Tufts 2 VBA Primer

Sub Adder()
a = 10
b = 33
Msgbox c
c = a + b
End Sub

This wouldn’t give the desired result because it would try to display the answer
before it had been calculated.

2. CONSTANTS, VARIABLES, ASSIGNMENT AND TYPES

Constants

There are three types of values (formally called constants) that are commonly used
by engineers:

 Integers. That is, whole numbers like 86400 or -37.
 Real. That is, numbers with decimal points. These are also called floating point

numbers in computer jargon. Examples would be 3.14159 and -9.81. Scientific
notation is handled as in 1E-5 is equivalent to 1x10-5.

 Character. Alphanumeric information like names and labels such as “Sarah Jones”
or “Oct. 1, 1998”

Variables and assignment

These are symbolic names that can be used to store constants. This is often
accomplished with an assignment statement like

a = -32
b = 7.325E2

These would store a value of -32 in the variable a. Therefore, you can say a has a
value of -32. Similarly, b has a value of 732.5 (i.e., 7.325x102).

It is useful to understand what the computer does when a line like a = 32 is
executed. In essence, it sets up a location in its memory which it labels with an a and
into which it stores the value of 32. The analogy of postal box locations is useful in
this regard (Fig. 1).

Tufts 3 VBA Primer

Visual BASIC Program

SUB Assign()
Dim a, b As Integer
Dim g As Single
Dim today As String
a = 32
b = -40
g = 9.81
today = “October 1, 1998”
END SUB

32
a

-40

9.81

October 1, 1998

b

g

today

FIGURE 1 Analogy between computer memory locations and postal boxes.
Notice that different size boxes are used for each variable type.

Question: Which of the two following Visual BASIC statements is incorrect? Why?

x = x + 1

a + b = c + d

Types

The postal box analogy stresses the fact that different memory locations are required
to store the 3 basic types of information. Some languages require that you declare the
type of each variable. In VBA, variable “typing” is voluntary, but highly
recommended. Because we believe that it’s excellent programming practice to type
variables, we can force the issue by placing the following line at the beginning of a
module,

Option Explicit

If we include such a line, we make typing mandatory. In such cases, all local
variables (that is, those that do not originate elsewhere) must be “dimensioned” with a
DIM statement. For example,

Dim a, b As Integer
Dim g As Single
Dim y as Double
Dim today As String
Dim x as Variant

Although you can “type” your variables in this fashion, Visual BASIC does not
require that you do so.

Tufts 4 VBA Primer

For the foregoing Dim statements, you could not include the line

a = “October 1, 1998”

This would result in an error message, because you’re telling the computer to put a
square peg in a round hole; that is, you’re telling it to store a string constant in a real,
single precision memory location. If you do this, the program will not execute and
you’ll get an error message.

3. MATHEMATICS

Mathematics are based on three key concepts: operator priority, left-to-right and
parentheses.

Operator Priority

Visual BASIC follows the following priorities:

Highest

Lowest

Parentheses ()
Exponentiation ^
Negation
Multiplication, *, and Division, /
Addition, +, and Subtraction,

OPERATOR PRIORITY

Therefore, if you had

x = 5 + 7 * 2

the computer would first multiply 7 * 2 to yield 14. It would then add this to 5 to give
19. The result would be assigned to the variable x.

Another example is

z = -2 ^ 2

The computer will first square the 2 to give 4 (since exponentiation supercedes
negation). Then it will negate it to give the final answer: 4.1

Left to Right

1 Remember that Excel works differently. That is, negation supercedes exponentiation. Hence –2
^ 2 in Excel would equal 4. (Hint: good test question)

Tufts 5 VBA Primer

When choosing between two operations with equal priority, the computer implements
them left-to-right. For example,

d = 10 / 5 * 7

It will first divide 10 by 5 to yield 2. Then it will multiply 2 * 7 to give the final
answer 14. Notice how going right-to-left would give an entirely different answer:

10 / 5 * 7 10 / 35 0.285714285714286

Parentheses

The preceding rules can be overridden by using parentheses. That is the computer will
evaluate operations in parentheses first and for nested parentheses will evaluate the
innermost first. For example, suppose that we want to evaluate

If we write it as

y = 4 + 9 / 7

the computer will first divide 9 by 7 and then add the result to 4. To make it do the
addition first, we enclose it in parentheses

y = (4 + 9) / 7

Intrinsic Functions

Note that some mathematical operations are performed so commonly that built-in or
intrinsic functions are available for their implementation. For example, suppose you
wanted to evaluate the square root of 2,

x = Sqr(2)

or evaluate the absolute value of the disciminant of the quadratic formula

d = Abs(b ^ 2 - 4 * a * c)

The most common are listed below

Operation Function Example Result
Square root Sqr a = Sqr(144) 12
Absolute value Abs b = Abs(-3 * 1.3) 3.9
Integer (returns integer part of number) Int c = Int(35.86) 35
Exponental function Exp c = Exp(1) 2.7182818
Natural logarithm Log b = Log(2.7182818) 0.9999999
Sine Sin r = Sin(30 * 3.14159 / 180) 0.4999996

Tufts 6 VBA Primer

Cosine Cos s = Cos(30 * 3.14159 / 180) 0.8660256
Tangent Tan t = Tan(45 * 3.14159 / 180) 0.9999867
Arc tangent Atn pi = 4 * Atn(1) 3.1415926

Question: Write the following expression in Visual BASIC

4. DECISIONS

There are two primary ways to get the computer to deviate from its line-by-line
sequential execution of statements. These are called decisions and loops.

As the name implies, decisions do one set of instructions if a logical statement is
true and another set if it is false. The If/Then/ELSE statement is the simplest way to
do this. For example,

d = b ^ 2 - 4 * a * c
If d > 0 Then
 r1 = (- b + SQR(d)) / (2 * a)
 r2 = (- b - SQR(d)) / (2 * a)
 i1 = 0
 i2 = 0
ELSE
 r1 = - b / (2 * a)
 r2 = - b / (2 * a)
 i1 = SQR(ABS(d)) / (2 * a)
 i2 = - I1
End If

5. LOOPS

As the name implies, loops do operations repetitively. There are two types of loops
depending on how the repetitions are terminated.

Decision loops

As the name implies, these loops terminate if a decision is true. An example is

Tufts 7 VBA Primer

x = 22
Do
 x = x - 2
 If x < = 5 Then Exit Do
Loop

This loop will repeat until x has been reduced to a value that is less than or equal to 5.

Count-controlled Loops

These execute a prespecified number of repetitions

x = 1
For i = 1 To 5
 x = x * i
Next i

This loop will execute 5 times (from 1 to 5). At the end of it, x will hold a value of 5!

6. ARRAYS

Subscripted variables are commonplace in algebra. For example, two simultaneous
algebraic equations can be written as

The counterpart in Visual BASIC is called an array. Instead of subscripts, parenthesis
are used, as in

b(1) = a(1, 1) * x(1) + a(1, 2) * x(2)
b(2) = a(2, 1) * x(1) + a(2, 2) * x(2)

Note that you are required to let the computer program know that variables are
arrays. This is done with the Dim statement,

Dim a(10, 10), b(10)

This sets aside 100 and 10 memory locations for the variables a and b, respectively.
Note that you can also employ the Dim statement to type the variables at the same
time. For example,

Dim a(10, 10) as Single, b(10) as Single

This is the way we would do it because of Option Explicit.

Tufts 8 VBA Primer

Loops are often used in conjunction with arrays. For example, here's a little
program that uses two nested loops to count from 1 to 10 using steps of 0.1. The
values 1 through 10 are stored in the array, t:

Sub TimeCount()
Dim t(20) as Single
tt = 0
t(0) = 0
For i = 1 To 10
 For j = 1 To 10
 tt = tt + 0.1
 Next j
 t(i) = tt
Next i
End Sub

7. FUNCTIONS AND SUBROUTINES

Modular programming refers to the way programs are organized into modules
designed to perform specific tasks. The modules come in two flavors: subroutines and
subroutines.

Subroutine

A subroutine or Sub is a group of code that performs a task. In VBA, we usually
invoke it with a button.

Function

A Function is designed to return a single answer to the calling program. For example,
a function to add two numbers and return the sum can be written as

Function Sum(a, b)
 Sum = a + b
End Function

Notice how the single answer (the sum) is assigned to the name of the function.

The Function is invoked by its name. Here's an example of how this is done for
the Function Sum,

Sub AddSub()
 x = 22
 y = 30
 a = Sum(x, y)
 b = Difference(x, y)
End Sub

Tufts 9 VBA Primer

Function Sum(a, b)
 Sum = a + b
End Function

Function Difference(a, b)
 Sum = a - b
End Function

8. INPUT/OUTPUT

The final fundamental concept involved in programming is how information is passed
in and out of a program.

Messages. When it is used as the macro language for Excel, the worksheet serves as
the input vehicle for Visual Basic. The most fundamental operation is the message
box. In its simplest form it merely displays a box containing information on the
screen as in

Msgbox "Are you ready?"

would result in something like

being displayed on the worksheet. If the user selects OK, the program would go back
to the next line and continue executing.

Input/Output. Some other fundamental statements that allow you to pass
information to and from a worksheet are

To select to a specific worksheet:

Sheets("Sheet1").Select

To select a specific cell

Range("b3").Select

To assign the value in the selected cell and assign it to a variable

Vol = ActiveCell.Value

To print a variable from your program into the selected spreadsheet cell:

ActiveCell.Formula = c

Tufts 10 VBA Primer

Another useful operation is to enter tabular information. For example, the user
might enter a table of times, flows and inflow concentrations:

A B C D E
1 Forcing Functions:
2 t(yrs) Q(m3/yr) pin(mg/m3)
3 1930 1.25E+09 32.00
4 1940 1.25E+09 32.00
5 1941 1.25E+09 44.00
6 1949 1.25E+09 44.00
7 1950 1.65E+09 51.52
8 1951 1.25E+09 64.80
9 1956 1.25E+09 64.80
10 1957 9.87E+08 94.43
11 1958 1.25E+09 83.44
12 1959 1.25E+09 92.24
13 1960 1.25E+09 101.12
14 1961 1.25E+09 109.92
15 1962 9.18E+08 161.76
16 1963 1.01E+09 154.95
17 1964 1.50E+09 136.41
18
19
20

Now it should be noted that this list might not be a fixed length. For example, at a
later date, the user might want to add additional years of data and run the program
again. Therefore, you have to develop a means to determine the number of data every
time the program is run. This can be done by the following code

'check length of forcing function
Range("a2").Select
Selection.End(xlDown).Select
bottom = ActiveCell.Row
nloads = bottom - 2
If nloads > 1000 Then nloads = 0

'input forcing functions
Range("a3").Select
For i = 1 To nloads
 t(i) = ActiveCell.Value
 ActiveCell.Offset(0, 1).Select
 Q(i) = ActiveCell.Value
 ActiveCell.Offset(0, 1).Select
 pin(i) = ActiveCell.Value
 ActiveCell.Offset(1, -2).Select
Next i

This code first goes to cell b2. Then the line

Selection.End(xlDown).Select

moves from a2 down to the last consecutive entry below it (in cell b17). The
statement

Tufts 11 VBA Primer

bottom = ActiveCell.Row

enters the row number of the active cell into the variable bottom. Therefore, bottom =
17. We can then perform the calculation

nloads = bottom - 2

to determine that the number of data are equal to 17 – 2 = 15. This information can
then be subsequently used to input the results with a FOR/NEXT loop.

Notice how the offset is used to shift over and down in order to make our way
through the values in the table and assign them to subscripted arrays.

The same sort of operation can be used for output. However, when outputting,
you will know the amount of information you are displaying. For example, your
program may have generated np = 16 data records consisting of time, inflow
concentration and lake concentration as in

A B C D E
1 Output:
2 t(yrs) cin(mg/m3) c(mg/m3)
3 1930 32 16
4 1931 32 15.26084446
5 1932 32 14.9826725
6 1933 32 14.87798596
7 1934 32 14.83858849
8 1935 32 14.82376174
9 1936 32 14.81818188

10 1937 32 14.81608197
11 1938 32 14.81529169
12 1939 32 14.81499428
13 1940 32 14.81488235
14 1941 44 16.64896156
15 1942 44 18.96986465
16 1943 44 19.84330754
17 1944 44 20.17201686
18 1945 44 20.2957225
19
20

The code to output this data is

Sheets("output").Select
Range("a3:c202").ClearContents
Range("a3").Select
For i = 1 To np
 ActiveCell.Formula = tout(i)
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Formula = pinp(i)
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Formula = pout(i)
 ActiveCell.Offset(1, -2).Select
Next i
Range("a3").Select

Tufts 12 VBA Primer

	The Basics of Programming in Visual BASIC
	1. THE “IDEA” OF A PROGRAM
	2. CONSTANTS, VARIABLES, ASSIGNMENT AND TYPES
	Constants
	Variables and assignment
	Types

	3. MATHEMATICS
	Operator Priority
	Left to Right
	Parentheses
	Intrinsic Functions

	4. DECISIONS
	5. LOOPS
	Decision loops
	Count-controlled Loops

	6. ARRAYS
	7. FUNCTIONS AND SUBROUTINES
	Subroutine
	Function

	8. INPUT/OUTPUT

